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Mesh deformation and modi�cation for time
dependent problems

Timothy J. Baker∗;†
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SUMMARY

Mesh coarsening and mesh re�nement are combined to provide a �exible approach for the adaptation
of time dependent problems. When the shape of the domain remains �xed but the computed solution is
unsteady (e.g. vortex shedding of laminar �ow over a cylinder), successive applications of coarsening
and re�nement allow the computed solution to be tracked in an e�cient manner. The addition of a
mesh movement phase extends this technique to handle a domain whose shape is also evolving with
time. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

There is a wide and rich variety of interesting problems that are essentially unsteady and
which can only be realistically solved if their time dependent nature is fully recognized as
part of the �nite element computation. This requires a mesh adaptive scheme that is able
to follow the evolution of the computed solution and, if necessary, adjust to changes in the
shape of the computational domain. For static adaptation (i.e. adaptation to the time dependent
changes in the computed solution on a �xed computational domain) mesh coarsening and
mesh re�nement are the main tools used to achieve the required goal. For dynamic adaptation
(i.e. meshes that evolve to follow changes in the shape of the computational domain) it is
necessary to augment the mesh coarsening and re�nement by a mesh movement algorithm.
Details of these components of the adaptation procedure are presented.
Unstructured meshes of triangles in 2D, or tetrahedra in 3D, are particularly well suited

to mesh modi�cation since local re�nement and=or coarsening can be achieved without the
introduction of hanging nodes or other arti�ces that often plague adaptation schemes for
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structured meshes. Most of the unstructured adaptive schemes that have been proposed so
far exploit h-re�nement by directly splitting the elements (i.e. insertion of new points at the
midpoints of edges) [1–3]. This approach has the advantage of being relatively straightforward
to implement, but can often lead to an excessively large increase in the number of mesh points
since each tetrahedron to be fully re�ned has new points inserted on each of its six edges.
The use of Delaunay based techniques for unstructured enrichment provides greater �exibility,
allowing new points to be placed wherever and as sparsely as the user deems appropriate.

2. LENGTH DENSITY FUNCTION

The decision whether or not to enrich a particular region of the mesh is based on a comparison
between the actual local length scale h (e.g. element width, circum-radius) and the desired
length scale speci�ed by a scalar variable � called the length density function. Suppose, for
example, that the goal is to convert an existing volume mesh into one with a smooth gradation
in mesh density throughout the domain and such that the density of the volume mesh near
the boundary surface matches the mesh size of the boundary triangulation. The value of the
mesh density function at each point on the boundary is computed as the average length of
the incident boundary edges [4]. Solving Laplace’s equation on the current volume mesh,
using the values of the length density function at the boundary as Dirichlet data, will yield
appropriate values of � at each mesh point. If the value of � at any position in the mesh
is less than the actual local length scale h then the mesh is re�ned by the insertion of an
extra point followed by a local mesh reconstruction using an incremental Delaunay algorithm.
Several possibilities have been considered for selecting the position of point placement (e.g.
at element barycentres [4], along edges [5], at element circum-centres [6] or along Vorono��
segments [7]). The Vorono�� segment method [7, 8] works extremely well in 2D but does not
extend readily to 3D. The circum-centre point insertion (CPI) method generates provably good
quality meshes in 2D [8, 9]. In 3D the CPI method can generate meshes with good element
quality provided care is taken to remove all slivers [10].
For all cases shown in this paper, the actual local length scale h is proportional to the

element circum-radius and point insertion is based on the CPI strategy. A element is thus
marked for re�nement if the circum-radius is too large when compared with the length density
function �. The local mesh reconstruction exploits a constrained Delaunay algorithm that can
be applied to any valid tetrahedral or triangular mesh. Cells to be removed are those whose
circumspheres contain the new point subject to the constraint that no boundary face should
be removed and that the new point is always visible from the exposed faces of the remaining
elements. This particular procedure for inserting a new point is an integral component of the
constrained Delaunay method that has been successfully exploited in a number of tetrahedral
mesh generators [4, 5, 10].
Mesh coarsening can be achieved by the use of an edge collapse technique whenever the

length density function � is large compared to the actual mesh length scale h [11].

3. STATIC ADAPTATION

Extra re�nement at any mesh position can be achieved by locally reducing the length density
function � to a value lower than the actual length scale h. If re�nement is desired in order
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MESH ADAPTIVE SCHEME 749

Figure 1. Initial domain and mesh for simulation of crack propagation.

to obtain a more accurate solution, a solution sensor or error estimator e must be constructed
to detect regions of rapid change in the computed solution. For the simulation of stress �elds
in solids the strain energy E can be used as the solution variable to drive adaptation [12]. In
particular, a �ner mesh is required in regions of high strain energy. The average strain energy
�E is �rst computed and the standard deviation � is formed where �2=E2 − �E

2
. Let

e=
E − �E − ��

�
(1)

where � is a user de�ned constant. Then

�new=




�
1 + �min(e; 1)

; E¿ �E + ��

�; E6 �E + ��
(2)

In other words, when the strain energy E exceeds the average plus � times �, the length
density function � is reduced in size. � is reduced by at most a factor 1=(1 + �) where � is
a O(1) user de�ned constant. Larger values of � create more rapid changes in mesh density
while larger values of � increase the threshold at which adaptation kicks in. This technique
has been applied to a variety of problems, including the simulation of crack propagation which
involves both static adaptation as well as dynamic adaptation (described in the next section)
to adjust the mesh for the deformation that occurs as the crack penetrates the solid. Figure 1
shows the mesh for a rectangular shaped solid that is under lateral tension. An initial defect,
modeled by a small depression, is evident on the upper surface. The external tension that is
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Figure 2. Deformed domain with adaptive re�nement near crack tip.

Figure 3. View of complete unadapted mesh at time instant t.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:747–768
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Figure 4. Close up view of the near wake region of the unadapted mesh at time instant t.

applied to the left and right sides of the domain induces a stress �eld in the solid. This stress
�eld causes material to migrate along the upper surface and away from the region of highest
strain energy at the tip of the defect. The resulting deformation in the shape of the upper
boundary changes the stress �eld and increases the strain energy. The defect thus evolves into
a crack that steadily penetrates further into the solid. Figure 2 shows the resulting domain
and adapted mesh at a particular instant after the crack has formed. The mesh has adapted
automatically to the change in domain shape and has become highly enriched in the vicinity
of the crack tip in order to resolve the large strain energy values in that region.
An example in which only static adaptation is used can be found in the work of Lin

[13]. He presents a computation of incompressible, laminar �ow over a cylinder for Reynolds
numbers between 50 and 180. Vortices shed from the cylinder are convected downstream so
that the �ow in the wake region exhibits a periodicity related to the vortex shedding frequency.
For this problem the physical property E was taken to be the total pressure. A view of the
complete unadapted mesh is shown in Figure 3 and a close up view of the near wake region
is presented in Figure 4. Figures 5 and 6 show the corresponding views of the mesh after
adaptation to the vorticity �eld displayed in Figure 7.Note that the mesh density matches the
intensity of the vorticity and varies in a reasonably smooth manner between regions of high
and low mesh density. Figures 8 and 9 present similar plots of the near �eld adapted mesh
and vorticity distribution at a time that is one half of a period T later. It is evident that the
mesh adaptation has successfully tracked the moving vortices, re�ning the mesh in the new
vortex positions and coarsening the part of the mesh that has been vacated by the vortex.

4. DYNAMIC ADAPTATION

Mesh modi�cation for time evolving domains can be carried out by a three stage combination
of mesh movement, mesh coarsening and mesh enrichment. One application of this three stage
procedure forms one cycle of dynamic adaptation. The extent of domain deformation that can
be accommodated during one cycle depends on how far the r-re�nement stage can stretch the
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Figure 5. View of complete adapted mesh at time instant t.

Figure 6. Close up view of the near wake region of the adapted mesh at time instant t.

elements without creating an invalid mesh with negative element volumes. Mesh coarsening
is then carried out to remove points associated with elements that have become badly shaped
during the r-re�nement stage. Finally, mesh enrichment serves to re-create a mesh whose
element quality is comparable to that of the original mesh. This modi�cation cycle can be
repeated any number of times to obtain a good quality mesh for any homotopic deformation
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Figure 7. Vorticity distribution in the near wake region at time instant t.

Figure 8. Close up view of the near wake region of the adapted mesh at time t + 1
2T .

of the boundary. At each stage one is operating on a valid (i.e. conforming, space �lling and
non-overlapping) mesh which thus avoids the di�culties that are associated with opening up
pockets and remeshing.
It is assumed that at a given time level t there exists a valid boundary conforming mesh.

During time step �t the boundary B of the domain is displaced to a new position B′, the
new boundary position having been determined by the physics of the simulation. At the end
of the mesh modi�cation cycle one requires a new mesh at time step t +�t that conforms
to the boundary B′ and maintains a mesh quality comparable to that of the mesh at time t.
After the mesh movement phase, the mesh quality will be severely degraded, and it is then

necessary to identify the badly deformed elements, remove them and insert new mesh points
to create a modi�ed mesh that has an acceptable element quality. An appropriate set of badly
deformed elements can be identi�ed by exploiting element deformation and shape measures
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Figure 9. Vorticity distribution in the near wake region at time instant t + 1
2T .

[14]. Mesh points, forming this set of elements, are thinned out by a series of edge collapse
operations applied to the shortest edge of each such element. The coarsening operation is
carried out for all badly deformed elements, including those adjacent to the boundary surface.
As a result, there is a selective pruning of points on the boundary surface that are associated
with badly shaped surface triangles.
The boundary surface is then re�ned by inserting new surface points and modifying the

incident tetrahedra to create a valid mesh containing the newly inserted boundary surface
points. At this stage of the procedure, there is a valid mesh consisting of an acceptable
boundary surface triangulation but a volume mesh that still has highly coarsened regions
containing overly large tetrahedra. The length density function for all boundary points is
then recomputed as the average length of the incident boundary edges. Values of the length
density function are distributed to the interior points of the coarsened volume mesh by the
Laplacian solver described in Section 2. Finally, enrichment of the volume mesh is carried
out by inserting a new point at the circumcentre of any tetrahedron whose circum-radius is
too large compared with the local value of the length density function.

5. MESH MOVEMENT

Suppose that the domain D has boundary B at time t and that during time step �t domain
D deforms into D′ with boundary B′. One seeks a homeomorphism from D to D′ so that a
mesh on D is mapped to a valid mesh on D′. Suppose that the point (x; y; z)∈D is mapped to
(x′; y′; z′)∈D′ and de�ne u=(u1; u2; u3) where u1=x′−x, u2=y′−y and u3=z′− z. One may
use the mesh on D to solve a suitable elliptic partial di�erential equation and thus compute
the displacement vector u at all mesh points on D. Adding the computed displacement u1
to x, u2 to y and u3 to z one obtains the new mesh points (x′; y′; z′) on D′. For example,
one could solve the Laplace equations ∇2u1=0, ∇2u2=0, ∇2u3=0 subject to the Dirichlet
boundary conditions u1, u2 and u3 given on B.
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A more robust mesh movement scheme can be constructed by modeling the domain as an
elastic solid and solving the equilibrium equations for the stress �eld [15, 16]. In terms of the
displacement vector u the strain tensor can be written as

�ij=
1
2

(
@ui
@xj

+
@uj
@xi

)
; i; j=1; 2; 3 (3)

For an isotropically elastic solid the stress tensor is de�ned as

�ij=��kk�ij + 2��ij; i; j=1; 2; 3 (4)

where � and � are the Lam	e constants, �ij is the Kronecker delta and the summation con-
vention (viz. �kk=�11 + �22 + �33) has been invoked. If there is no distributed body force the
stress �eld satis�es the equation

@�ij
@xi

=0 (5)

Dividing by the shear modulus � leads to an equation that depends only on the parameter
�=�. Alternatively, one can introduce Poisson’s ratio

�=
�

2(�+ �)
(6)

and consider this to be the user de�ned parameter.
When mesh coarsening and enrichment is introduced as part of a dynamic adaptation cycle,

it is no longer necessary to move the mesh as far as possible during each r-re�nement stage.

A

B

C

D

P

Figure 10. Edge collapse of AB onto point P is invalid.
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In fact, considerations of computational e�ciency favor an r-re�nement scheme that permits
a smaller degree of mesh deformation if this can be accomplished at a much smaller com-
putational cost than more robust mesh movement methods. In practice, the combined mesh
coarsening and enrichment stages account for no more than 20% of the total computation time
if the simplest mesh movement scheme is used. For more robust, and thus computationally
more expensive, mesh movement schemes the r-re�nement stage can consume as much as
95% of the total time.
A particularly simple and cost e�ective r-re�nement scheme is obtained if one approximates

Laplace’s equation by summing di�erences of the dependent variable along each edge incident
to a mesh point. Introducing a variable di�usivity 	 adds only a negligible computational
overhead while delaying the onset of mesh breakdown. De�ne a variable di�usivity by [17]

	=1+
Vmax − Vmin

V
(7)

where V denotes the volume of an element and Vmax and Vmin are, respectively, the maximum
and minimum element volumes. Let 
 be the dependent variable and let ∇· (	∇
)=0 be the
equation to be solved. If 
0, respectively 
k , represents the discrete approximation to 
 at
the mesh point P0, respectively Pk , then the residual at P0 is given by

∇ · (	∇
)|0≈ 1
S0

m∑
k=1
�0k(
k − 
0) (8)

where the k summation is over the m edges {P0Pk |k=1; : : : ; m} incident to the point P0, the
coe�cient �0k=

∑
j 	j where the j summation is over all the elements incident to the edge

P0Pk and the term S0=
∑m

k=1 �0k .

A

B
P

C

D

Figure 11. Edge collapse of AB onto point P is invalid.
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A
A’ B’ B

D E

Figure 12. Visibility region is A′B′.

Using the superscript n to denote the nth iteration, one can write a point Jacobi scheme as


n+10 =
n0 +
�
S0

m∑
k=1
�0k(
nk − 
n0) (9)

where 0¡�61 is a relaxation factor. It is computationally far less expensive than solving the
stress equilibrium equations by a �nite element method, and the above scheme is the preferred
r-re�nement method for use in the dynamic adaptation procedure.

6. MESH COARSENING BY EDGE COLLAPSE

The coarsening procedure described in Reference [11] was based on the use of edge collapse
in both 2D and 3D. Given edge AB, the two points A and B would be replaced by a new
point P at the mid-point of edge AB, the edge AB and the two triangles (the ring of tetrahedra
in 3D) incident to edge AB would be removed and the data structure would be updated to
correspond to the new mesh that contains one less point. Situations in which this procedure
could fail are illustrated for 2D in Figures 10 and 11.
In Figure 10, collapsing edge AB onto point P would cause edge AD to cross edge CD

creating an invalid mesh. In the original implementation of the coarsening procedure this
edge restriction would result in the edge being left untouched. In this case, however, edge
AB could be collapsed onto point A leading to a valid mesh. In Figure 11, though, it is clear
that there is no point on edge AB onto which this edge could be collapsed without creating
an invalid mesh. In the original implementation of the method, the smoothing routine that
uses edge swapping su�ced to modify the 2D mesh into a state where a further round of
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A B
P

Figure 13. Edge AB and associated region DAB .

P

Figure 14. Region DAB after edge collapse onto point P at midpoint of AB.

P

Figure 15. Candidate points P′
n shown by open circles.
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P

Figure 16. Region DAB after edge collapse onto point P at the modi�ed position.

P
Q

Q
Q

Q

1

2

3

4

Figure 17. Splitting of boundary faces and tetrahedra.

edge collapse would now permit the removal of edges that were not removed the �rst time.
In 3D there is a richer variety of circumstances in which non-valid tetrahedral combinations
can arise when edges are collapsed. Furthermore, the smoothing routines based on a set of
edge=face swapping procedures did not always su�ce to change the mesh topology to a state
where a further round of edge collapse would remove all the remaining edges that had been
assigned for treatment.
The edge connectivity of the con�guration shown in Figure 11 blocks the application of the

collapse procedure for edge AB. This blocking occurs because vertex C, a vertex associated
with one of the triangles incident to edge AB, has an edge valence of three. This is, of
course, the minimum possible edge valence for an internal point in a planar triangulation. An
analogous blocking of the collapse procedure occurs in three dimensions if any vertex, other
than A or B, in the ring of tetrahedra surrounding edge AB, has the minimum edge valence
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Figure 18. Interpolation of boundary point at edge midpoint as seen in plane 
.

Figure 19. Heart slice at initial position.
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Figure 20. Change in heart slice after one quarter period.

of four. Such cases can be resolved by removing the o�ending point (point C in Figure 11)
and, in the planar case, replacing the three triangles ABC, BDC and DAC by triangle ABD.
The equivalent operation in three dimensions is the replacement of four tetrahedra incident to
the valence four point by one tetrahedron whose four faces correspond to the faces originally
opposite that point.
After removal of all valence four points in the ring of tetrahedra incident to edge AB, it

should be possible to collapse edge AB without inverting any neighboring tetrahedra. It is,
however, possible that collapse of the edge AB is only feasible if the new point P lies in a
restricted region of this edge. This is illustrated for the planar case in Figure 12. It is evident
that the part A′B′ of edge AB in which P may lie corresponds to the intersection of the
regions AB′ and A′B of edge AB that are visible from the points D and E respectively.
Placing the new point P at any position on edge AB tends to induce a degradation in the

quality of the triangles or tetrahedra incident to P (see Figures 13 and 14). The degradation
in quality increases with the number of edges collapsed leading to a �nal coarsened mesh that
contains many badly shaped elements. In the planar case, it is possible to recover mesh quality
su�ciently well by swapping diagonals of convex pairs of triangles. The mesh enrichment
procedure that follows the coarsening and smoothing stage will guarantee a good quality mesh
[8, 9].
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Figure 21. Change in heart slice after one half period.

For tetrahedral meshes, smoothing by edge=face swapping will go a signi�cant way towards
the full recovery of a good quality mesh. It is still possible, however, for one or more slivers
to remain in the mesh, and the presence of these singular tetrahedra will almost invariably
lead to failure of the next mesh movement stage. One way to alleviate this problem is by
placing P at a new position o� the edge AB. De�ne DAB to be the closed region of the
meshed domain M occupied by elements that are incident to either point A or point B. The
elements contained in DAB all change shape when the edge AB is collapsed. De�ne @DAB to
be the boundary of DAB. Each edge (face in 3D) in @DAB is incident to exactly one triangle
(tetrahedron) of DAB and one triangle (tetrahedron) of M −DAB. The point P must lie inside
DAB and be visible from all edges (faces) of @DAB.
In practice, we �rst associate a candidate position for P with each edge (face) of @DAB. Let

N be the number of edges (faces) on @DAB and denote by {P′
n|n=1; : : : ; N} the N candidate

positions of P. The candidate position P′
n for each edge (face) is selected as the vertex of a

good quality triangle (tetrahedron) built on the edge (face). In the 2D case, P′
n is chosen to be

the vertex that would create an equilateral triangle (shown by the empty circles in Figure 15).

In the 3D case, let e be the average edge length of the boundary face and de�ne h=
√

2
3e. The

candidate position P′
n is located on the line normal to the face that passes through the face

barycentre and at a distance h from the face barycentre. If the boundary face is equilateral
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Figure 22. Box surface and cut through volume mesh.

then the candidate position corresponds to the vertex of a regular tetrahedron built on the face.
For the general case, when the face is not equilateral, this choice represents a compromise
that corresponds to a tetrahedron whose aspect ratio is reasonable.
The new position P is then determined as the average of the N candidate positions [5] (see

Figures 15 and 16). In general, the position P will give rise to a collection of good quality
triangles (tetrahedra) although it is possible to create an invalid triangulation if the region
DAB is non-convex. If the visibility test fails, the point P can be moved closer to the edge
AB and checked again for visibility.

7. BOUNDARY ENRICHMENT

If the boundary of the computational domain changes shape during the computation, it will
be necessary to modify the triangulation of the boundary surface. Coarsening of the boundary
triangulation occurs automatically as part of the volume coarsening procedure. It is, however,
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Figure 23. Rounded box surface and cut through volume mesh.

necessary to enrich the surface prior to enrichment of the volume mesh. A boundary face is
currently marked for re�nement if the maximum edge length is more than twice the mini-
mum edge length. Future developments will seek to enrich the boundary surface based on an
assessment of the local curvature.
Each boundary face that has been selected in this way is split by bisecting its longest edge.

Inserting a mesh point on a boundary edge will cause both incident boundary faces to be
split (see Figure 17). It follows that the state of the boundary triangulation after re�nement
will depend on the order in which the boundary edges are taken. A list of boundary faces
that have been marked for re�nement is therefore created and this list is ordered according to
triangle aspect ratio (de�ned as the ratio of circum-radius to in-radius). Starting with the face
whose aspect ratio is largest, the longest edge is bisected and the two incident boundary faces
are split. Each tetrahedron that is incident to the edge is also split into two new tetrahedra.
This procedure is applied in turn to the longest edge of each boundary face that has been
marked for re�nement. The length density function is recalculated on the boundary and a
Laplacian solver is used to distribute the length density function throughout the volume mesh
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Figure 24. Ellipsoidal surface and cut through volume mesh.

as described in Section 2. Delaunay based tetrahedral re�nement is then applied to the volume
mesh to complete the enrichment procedure.
It is important to ensure that each new boundary point lies on, or at least close to, the

true boundary surface. If this information is not readily accessible then the position can be
approximated reasonably well by means of Hermite interpolation. A similar approach has
been suggested by Weatherill et al. [18] who interpolate new points on boundary faces. The
surface enrichment used here only requires the interpolation of new points at the midpoints
of boundary edges. The resulting edge and face splitting is applied recursively in a manner
that maintains a reasonable level of surface mesh quality. Inserting new boundary points at
edge midpoints in a recursive fashion leads to a considerable simpli�cation of the boundary
enrichment procedure. There is no need to allow for the multiple splitting patterns that arise
when a boundary face is split along one, two or three edges at a time. In addition, Hermite
interpolation at the midpoint of an edge assumes a particularly simple form that would not
be the case if the new point were placed on the interior of a boundary face.
Let the two endpoints of the boundary edge be P0 with position vector x0 and P1 with

position vector x1, and let the unit normals at these points be n0 and n1 respectively. The
surface normal at each boundary point is approximated by averaging the normals of the
incident boundary faces.
Let n be the unit normal to the plane 
 in which the new point Q should lie. This plane

also contains points P0 and P1 and thus the edge joining P0 to P1. Fit a cubic polynomial
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Figure 25. Elongated surface and cut through volume mesh.

lying in the plane 
 through the points P0 and P1 whose tangents at P0 and P1 are parallel to
the corresponding surface tangent planes (see Figure 18). Let c be the vector from the edge
midpoint to the point Q which lies halfway along the interpolating cubic curve. The correction
c thus represents a displacement in the plane 
 that should be added to the coordinates of
the edge midpoint in order to obtain an approximation to the true boundary surface.
Let t0 and t1 be the tangent vectors lying in the plane 
. Thus,

t0=
n0 × n
|n0 × n| ; t1=

n1 × n
|n1 × n| (10)

Let �0 be the angle between t0 and the edge vector x1 − x0. Similarly, de�ne �1 as the
angle between t1 and x1 − x0 and let m0= tan �0, m1= tan �1, be the imposed slopes of the
interpolating curve at each endpoint. For a point lying half way between P0 and P1, Hermite
interpolation takes a particularly simple form. The displacement is given by

c=
(m0 −m1)

8
n× (x1 − x0) (11)

In general, the plane 
, in which the interpolated point should lie, is chosen to be the plane
that bisects the dihedral angle between the two boundary faces incident to the edge joining
P0 and P1. This choice is, however, undesirable at corners or salient edges where the angle
between the normals of adjacent faces undergoes a large change. This situation typically
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Figure 26. Dumbbell surface and cut through volume mesh.

occurs when two surfaces intersect. It is then preferable to place the new point on one of the
two new surfaces so that 
 contains one of the two faces that are incident to the edge joining
P0 to P1.

8. EXAMPLES

The �rst example presented in Figures 19–21 shows the result of applying the mesh modi�-
cation method to a 2-D slice through a heart. The meshed domain consists of heart muscle
in the region bounded by the pericardium on the outside and the two ventricles on the in-
side. During one heart cycle the heart muscle changes shape dramatically and the ventricles
alternately contract and expand by considerable amounts. The sequence of �gures shows the
change in shape during one-half of a cardiac period. The change from Figure 19 to 20 was
accomplished in 16 mesh modi�cation cycles with another 16 cycles to go from the state
shown in Figure 20 to that shown in Figure 21.
The next �ve �gures show an example of mesh modi�cation for a 3D domain that starts

as a box, morphs to a sphere, to an ellipsoid and �nally to a dumbbell shape. The complete
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sequence takes 45 cycles of the three stage procedure described in this paper. Each of the �ve
snapshots presented in Figures 22–26 was obtained using the vizualization software Medit [19]
and shows a cut through the object displaying some of the internal tetrahedra and part of the
surface mesh.
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